INST Faculty Directory

Dr. Dipankar Mandal

Scientist E/Associate Professor

Education

♦ Ph.D (2008), Brandenburgische Technische Universität Cottbus, Germany

♦ M.Tech (2004), Materials Science and Engg.– IIT Kharagpur India

♦ M.Sc (2002), PhysicsJadavpur University, India

♦ B.Sc (2000), Physics Hons.Burdwan University, India

Positions Held/Research Experience

Assistant Professor-Department of Physics, Jadavpur University, India (April 2008-October 2017)

♦ Postdoctoral Researcher-Kyung Hee University, South Korea (August 2009- July 2011)

♦ Scientific assistant-BTU Cottbus, Germany (December 2005-March 2008) (These two years was taken leave from Jadavpur University)

Research interests

♦ Advanced Functional Materials

♦ Piezo-,Pyro-, Ferroelectric Materials

♦ Development of Mechanical and Thermal Energy Harvesters

♦ Flexible Nanogenerator, Bio-signal Monitoring via Noninvasive Biosensors

♦ Self-powered Electronics

♦ e-Skin

♦ Nanomaterial Synthesis

♦ Development of Electrospinning Technique for Nanofiber preparation

 ♦ Rare-earth Doped Glass

♦ Surface Science

Publications

Peer reviewed journals

  1. K. Roy, S. K. Ghosh, A. Sultana, S. Garain, M. Xie, C. Bowen, K. Henkel, D. Schemeisser and D. Mandal*, 2019, A Self-powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers, ACS Applied Nano Materials, DOI: 10.1021/acsanm.9b00033.
  2. Y. Zhang, C. R. Bowen, S. K. Ghosh, D. Mandal*, H. Khanbareh, M. Arafa, C. Wan, Ferroelectret Materials and Devices for Energy Harvesting Applications, 2019, Nano Energy (IF~13.1), 57, 118 – 140.
  3. A. Sultana, M.M. Alam, S.K. Ghosh, T. R. Middya and D. Mandal*, 2019, Energy Harvesting and Self-powered Microphone Application on Multifunctional Inorganic-Organic Hybrid Nanogenerator, Energy (IF~4.9), 97, 963 – 997.
  4. K. Maity, S. Garain, K. Henkel, D. Schmeißer and D. Mandal*, 2018, Natural Sugar Assisted Chemically Reinforced Highly Durable Piezo-Organic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics, ACS Appl. Mater. Interfaces (IF~8.0),10, 44018–4403.
  5. S. K. Ghosh and D. Mandal*, 2018, Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor”, Nano Energy (IF~13.1), 53, 245 – 257.
  6. A. Sultana, Md. M. Alam, P. Sadhukhan, U. K. Ghorai, S. Das, T. R. Middya and D. Mandal*, 2018, Organo-lead Halide Perovskite Regulated Green Light Emitting Poly(vinylidene fluoride) Electrospun Nanofiber Mat and its Potential Utility for Ambient Mechanical Energy Harvesting Application, 2018, Nano Energy (IF~13.1), 49, 380 – 392.
  7. K. Maity and D. Mandal*, All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors, 2018, ACS Appl. Mater. Interfaces (IF~8.0), 10, 18257−18269.
  8. A. Sultana, Md. M. Alam, T. R. Middya and D. Mandal*, 2018, A Pyroelectric Generator as a Self-powered Temperature Sensor for Sustainable Thermal Energy Harvesting from Waste Heat and Human Body Heat, Applied Energy (IF~7.9) 221, 299 – 307.
  9. A. Sultana, P. Sadhukhan, Md. M. M. Alam, S. Das, T. R.  Middya and D. Mandal*, 2018, Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector, ACS Appl. Mater. Interfaces (IF~8.0),10,4121–4130.
  10. Md. M. M. Alam, S. K. Ghosh, A. Sultana, and D. Mandal*, 2018, An Efficient Wind Energy Harvester of Paper Ash-Mediate Rapidly Synthesized ZnO Nanoparticle-Interfaced Electrospun PVDF Fiber, ACS Sustainable Chem. Eng.(IF~6.1), 6, 292–299.
  11. Md. M. M. Alam, A. Sultana, D. Sarkar and D. Mandal*, 2018, Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator, ACS Appl. Energy Mater. 1 (7), 3103–3112.
  12. S. K. Ghosh, M. Xie, C. R. Bowen, P. R. Davies, D. J. Morgan and D. Mandal*, 2017, A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure, Scientific Reports (IF~4.1), 7, 16703, DOI: 10.1038/s41598-017-16822-3.
  13. S. K. Ghosh and D. Mandal*, 2017, Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring, Appl. Phys. Letter. (IF~3.1), 110 (12), 123701.
  14. S. K. Ghosh, P. Adhikary, S. Jana, A. Biswas, V. Sencadas, S. D. Gupta, B. Tudu and D. Mandal*, 2017, Electrospun gelatin nanofiber based self-powered Bio-e-Skin for health care monitoring, Nano Energy (IF~11.5), 2017, 36, 166.
  15. Md. M. Alam, S. K. Ghosh, A. Sultana and D. Mandal*, 2017, An effective wind energy harvester by paper-ash mediated rapid synthesized ZnO nano-particle interfaced electrospun PVDF fiber, ACS Sustainable Chem. Eng. (IF~5.9), DOI: 10.1021/acssuschemeng.7b0244.
  16. S. K. Ghosh, M. Xie, C. R. Bowen, P.R. Davies, D.J. Morgan  and D. Mandal*, 2017, A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fuoride) ferroelectret structure, Scientific Reports (IF~4.2) 7, 16703.
  17. Md. M. Alam, S. K. Ghosh, D. Sarkar, S. Sen and D. Mandal*, 2017, Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput, Nanotechnology (IF~3.5), 28, 015503.
  18. S. K. Ghosh and D. Mandal*, 2017, Sustainable energy generation from piezoelectric biomaterial for noninvasive physiological signal monitoring, ACS Sustainable Chem. Eng. (IF~5.9) 5, 8836–8843.
  19. A. Sultana, S. K. Ghosh, V. Sencadas, T. Zheng, M. J Higgins, T. R. Middya and D. Mandal*, 2017, Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-L-lactic acid nanofibers for non-invasive physiological signal monitoring, J. Mater. Chem. B (IF~5.9) 5, 7352–7359.
  20. K. Maity, B. Mahanty, T. K. Sinha, S. Garain, A. Biswas, S. K. Ghosh, S. Manna, S. K. Ray* and  D. Mandal*, 2017, Two-dimensional piezoelectric MoS2-modulated nanogenerator and nanosensor made of poly(vinlydine fluoride) nanofiber webs for self-powered electronics and robotics, Energy Technology (IF~2.5), 5(2), 234–243.
  21. B. Mahanty, S. K. Ghosh, S. Garain, and D. Mandal*, 2017, An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer, Materials Chemistry and Physics (IF~2.1),186, 327–332.
  22. P. Adhikary and D. Mandal*, 2017, Enhanced electro-active phase in a luminescent P(VDF–HFP)/Zn2+ flexible composite film for piezoelectric based energy harvesting applications and self-powered UV light detection, Phys. Chem. Chem. Phys. (IF~4.4), 19, 177789–17798.
  23. Md. M. Alam, A. Sultana, D. Sarkar and D. Mandal*, 2017, Electroactive β-crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO2 free-standing nanocomposite film for a nanogenerator and an active nanosensor, Nanotechnology (IF~3.5), 28, 365401.
  24. W. Rahman, S. K. Ghosh, T. R. Middya, D. Mandal*, 2017, Highly durable piezo-electric energy harvester by a super toughened and flexible nanocomposite: effect of laponite nano-clay in poly(vinylidene fluoride), Mater. Res. Express (IF~1.0) 4, 095305.
  25. A. Biswas, S. Garain, K. Maity, K. Henkel, D. Schmeißer and D. Mandal*, 2017 Influence of in situ synthesized bismuth oxide nanostructures in self-poled PVDF-based nanogenerator for mechanical energy harvesting application, Polymer Composites (IF~1.5), DOI 10.1002/pc.24628.
  26. A. Biswas, K. Henkel, D. Schmeisser and D. Mandal*, 2017, Comparison of the thermal stability of the α, β and γ phases in poly(vinylidene fluoride) based on in situ thermal Fourier transform infrared spectroscopy, Phase Transitions 19, 1205 ̶  1213.
  27. S. K. Ghosh and D. Mandal*, 2016, High-performance biopiezoelectric nanogenerator made with fish scale, Appl. Phys. Letter. (IF~3.1), 109 (10), 103701 (Selected in AIP press release and different print and electronic media. It was also selected as editor’s pick).
  28. S. K. Ghosh, A. Biswas, S. Sen, C. Das, K. Henkel, D. Schemeisser and D. Mandal*, 2016, Yb3+ assisted self-polarized PVDF based ferroelectretic nanogenerator: A facile strategy of highly efficient mechanical energy harvester fabrication, Nano Energy (IF~11.5), 30, 621  ̶  629.
  29. S. Jana, S. Garain, S. K. Ghosh, S. Sen and D. Mandal*, 2016, The preparation of γ-crystalline non-electrically poled photoluminescant ZnO–PVDF nanocomposite film for wearable nanogenerators, Nanotechnology  (IF~3.5), 27, 445403.
  30. P. Adhikary, A. Biswas and D. Mandal*, 2016, Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF -HFP)/graphene composite nanofibers for self-powered voice recognition, Nanotechnology (IF~3.5), 27, 495501.
  31. Md. M. Alam and D. Mandal*, 2016, Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility, ACS Appl. Mater. Interfaces (IF~7.1), 8 (3),1555–1558 (Selected in ACS press release and different print and electronic media).
  32. S. K. Ghosh, T. K. Sinha, B. Mahanty, S. Jana, and  D. Mandal*, 2016, Porous polymer composite membrane based nanogenerator: A realization of self-powered wireless green energy source for smart electronics applications, J. Appl. Phys. (IF~2.1), 120 (17), 174501.
  33. S. Garain, K. Barman, T. K. Sinha, Sk. Jasimuddin*, J. Haeberle, K. Henkel, D. Schemeisser and D. Mandal*, 2016, Cerium(III) Complex Modified Gold Electrode: An Efficient Electrocatalyst for the Oxygen Evolution Reaction, ACS Appl. Mater. Interfaces (IF~7.1), 8 (33), 21294–21301.
  34. S. K. Ghosh and D. Mandal*, 2016, Efficient natural piezoelectric nanogenerator: Electricity generation from fish swim bladder, Nano Energy (IF~11.5), 28, 356–365.
  35. T. K. Sinha, S. K. Ghosh, R. Maiti, S. Jana, B. Adhikari, D. Mandal* and S. K. Ray*, 2016, Graphene-silver-induced self-polarized PVDF-based flexible plasmonic nanogenerator toward the realization for new class of self-powered optical sensor, ACS Appl. Mater. Interfaces (IF~7.1), 8 (24),14986–14993.
  36. S. K. Ghosh, W. Rahman, T. R. Middya, S. Sen and D. Mandal*, 2016, Improved breakdown strength and electrical energy storage performance of γ-poly(vinylidene fluoride)/unmodified montmorillonite clay nano-dielectrics, Nanotechnology (IF~3.5)27, 215401.
  37. P. Adhikary, S. Garain S. Ram and D. Mandal*, 2016, Flexible hybrid Eu3+ doped P(VDF-HFP) nanocomposite film possess hypersensitive electronic transitions and piezoelectric throughput, J.Poly.Sci.,B:Poly.Phy. (IF~3.3),54, 2335–2345.
  38. A. Sultana, Md. M. Alam, A. Biswas, T. R. Middya and D. Mandal*, 2016, Fabrication of wearable semiconducting piezoelectric nanogenerator made with electrospun-derived zinc sulfide nanorods and poly(vinyl alcohol) nanofibers, Translational Materials Research (IF~NA, since it is newly lunched journal) 3 (4), 045001.
  39. S. Garain, S. Jana, T. K. Sinha, and D. Mandal*, 2016, Design of in situ poled Ce3+ -doped electrospun PVDF/Graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator, ACS Appl. Mater. Interfaces (IF~7.1),8,4532–4540.
  40. P. K. Sarkar, S. Maji, G. S. Kumar, K. C. Sahoo, D. Mandal and S. Acharya*, 2016, Triboelectric generator composed of bulk poly(vinylidene fluoride) and polyethylene polymers for mechanical energy conversion, RSC Adv. (IF~3.2), 6, 910–917.
  41. A. Tamang, S. K. Ghosh, S. Garain, Md. M. Alam, K. Henkel, D. Schmeißer and D. Mandal*, 2015, DNA-assisted β-phase nucleation and alignment of molecular dipoles in PVDF film: A realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices, ACS Appl. Mater. Interfaces (IF~7.1),7,16143–16147. (Selected for American Chemical Societies’ press release and several international and national media coverage).
  42. S. Jana, S. Garain, S. Sen and D. Mandal*, 2015, The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films, Phys. Chem. Chem. Phys. (IF~4.4),17, 17429−17436.
  43. S. K. Karan, D. Mandal and B. B. Khatua*, 2015, Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester, Nanoscale (IF~7.7),7, 10655−10666.
  44. Md. M. Alam, S. K. Ghosh, A. Sultana and D. Mandal*, 2015, “Lead-free ZnSnO3/MWCNTs-based flexible hybrid nanogenerator for piezoelectric power generation”, Nanotechnology (IF~3.5), 26, 165403.
  45. S. K. Ghosh, T. K. Sinha, B. Mahanty and  D. Mandal*, 2015, Self-poled efficient flexible “Ferroelectretic” nanogenerator: A new class of piezoelectric energy harvester, Energy Technology (IF~2.5), 3, 1190−1197.
  46. P. Adhikary, S. Garain and D. Mandal*, 2015, The co-operative performance of a hydrated salt assisted sponge like P(VDF-HFP) piezoelectric generator: an effective piezoelectric based energy harvester, Phys. Chem. Chem. Phys.(IF~4.4),17, 7275−7281.
  47. S. Garain, T. K. Sinha, P. Adhikary, K. Henkel, S. Sen, S. Ram, C. Sinha, D. Schmeißer and D. Mandal*, 2015, Self-poled transparent and flexible UV-light emitting cerium complex-PVDF composite: A high performance nanogenerator, ACS Appl. Mater. Interfaces (IF~7.1),2015, 7, 1298−1307.
  48. S. MajiP. K. SarkarL. AggarwalS. K. Ghosh and D. Mandal*, G. Sheet* and  S. Acharya*, 2015,  “Self-oriented β-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir–Schaefer film”, Phys. Chem. Chem. Phys. (IF~4.4),17, 8159−8165.
  49. A. Sultana, Md.M. Alam, S. Garain, T. K. Sinha, T. R. Middya and D. Mandal*, 2015,  An Effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: An alternative of MWCNT filler, ACS Appl. Mater. Interfaces (IF~7.1), 7, 19091–19097.
  50. S. ShowA. Tamang, T. ChowdhuryD. Mandal*, B. Chattopadhyay, 2015, Bacterial (BKH1) assisted silica nanoparticles from silica rich substrates: A facile and green approach for biotechnological applications”, Colloids and Surfaces B: Biointerfaces (IF~4.1), 126, 245−250.
  51. D. Mandal*, K. Henkel and D.Schmeißer, 2014, Improved performance of a polymer nanogenerator based on silver nanoparticles doped electrospun P(VDF–HFP) nanofibers, Phys. Chem. Chem. Phys. (IF~4.4), 16, 10403−10407.
  52. S. K .Ghosh, Md. M. Alam and D. Mandal*, 2014, The in situ formation of Platinum Nanoparticles and their Catalytic role in Electroactive Phase Formation in Poly(vinylidene fluoride): A Simple Preparation of Multifunctional Poly(vinylidene fluoride) Films doped with Platinum Nanoparticles, RSC Advances (IF~3.2), 4, 41886−41894.
  53. S. Sarkar, S. Garain, D. Mandal* and K. K. Chattopadhyay, 2014, Electro-active phase formation in PVDF-BiVO4 flexible nanocomposite films for high energy density storage application, RSC Advances (IF~3.2), 4, 48220−48227.
  54. R. Patra, S. Suin, D.Mandal*, B. B. Khatua*, 2015, Reduction of percolation threshold of multiwall carbon nanotube (MWCNT) in polystyrene (PS)/low-density polyethylene (LDPE)/MWCNT nanocomposites: An eco-friendly approach”, Polymer Composites (IF~1.5), 36, 1574–1583.
  55. R.Patra, S. Suin, D. Mandal*, B. B. Khatua*, 2014, Sequential mixing as effective method in the reduction of percolation threshold of multiwall carbon nanotube in poly(methyl methacrylate)/high-density poly(ethylene)/MWCNT nanocomposites, J. Appl. Polym. Sci.(IF~1.4), 131, 40235 (1-12).
  56. D. Mandal, K. J. Kim and J. S. Lee, 2012, Simple Synthesis of Palladium Nanoparticles, β-Phase Formation, and the control of chain and dipole orientations in palladium-doped poly(vinylidene fluoride) thin films, Langmuir (IF~4.0), 28, 10310−10317.
  57. D. Mandal*, K. Henkel and D. Schmeißer, 2012, The electroactive β-phase formation in poly(vinylidene fluoride) by gold nanoparticles doping, Materials Letters (IF~2.4), 73, 123–125.
  58. D. Mandal*, K. Müller, K. Henkel and D. Schmeißer, 2012, The effect of X-ray photoelectron spectroscopy measurement on P(VDF-TrFE) copolymer thin films, Applied Surface Science (IF~2.7), 261, 209–213.
  59. D. Mandal*, K.Henkel and D.Schmeißer, 2011, Comment on preparation and characterization of silver-poly(vinylidene fluoride) nanocomposites: formation of piezoelectric polymorph of poly(vinylidene fluoride), J. Phys. Chem. B (IF~3.2), 2011, 115, 10567–10569.
  60. D. Mandal, S. Yoon and K. J. Kim, 2011, Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor, Macromolecular Rapid Communications (IF~4.6), 32, 831–837.
  61. K. Müller, K. Henkel, D. Mandal, B. Seime, I. Paloumpa and D.Schmeißer, 2011, Spin-coated organic ferroelectric films for non-volatile memories, Physica Status Solidi (a) (IF~1.5), 208, 330–342.
  62. D. Mandal*, K. Henkel, K. Müller and D. Schmeißer, 2010 “Band gap determination of P(VDF-TrFE) copolymer film by electron energy loss spectroscopy”, Bull. Mater. Sc. (IF~0.9), 33, 457–461.
  63. D. Schmeisser, M. Tallarida, K. Henkel, K. Müller, D. Mandal, D. Chumakov and E. Zschech, 2009, Characterization of oxidic and organic materials with synchrotron radiation based XPS and XAS, Materials Science-Poland (IF~0.5), 27, 141–157.
  64. K. Henkel, I. Lazareva, D. Mandal, I. Paloumpa, and K. Müller, Y. Koval, P. Müller, and D. Schmeißer, 2009, Electrical investigations on metal/ferroelectric/insulator/semiconductor structures using poly[vinylidenefluoride trifluoroethylene] as ferroelectric layer for organic nonvolatile memory applications, J. Vac. Sci. Technol. B (IF~1.4), 27, 504–507.
  65. K. Müller, D. Mandal, K. Henkel, I. Paloumpa and D. Schmeisser, 2008, “Ferroelectric properties of spin-coated ultra-thin (down to 10 nm) P(VDF/TrFE) copolymer films”, Appl. Phys. Lett.(IF~3.1), 93, 112901.
  66. K. Müller,Y. Burkov, D. Mandal, K. Henkel, I. Paloumpa, A. Goryachko and D. Schmeißer, 2008, Microscopic and spectroscopic characterization of interfaces and dielectric layers for OFET devices, Physica Status Solidi (a) (IF~1.5), 205, 600–611.
  67. P. K. H. Ho, L. L. Chua, D. Mandal, X. Gao, D. Qi, A. T .S. Wee, J. F. Chang and R. H. Friend, 2007, Solvent effects on chain orientation and inter chain π-interaction in conjugated polymer thin films: direct measurements of the air and substrate interfaces by Near-Edge X-ray Absorption Spectroscopy, Advanced Materials (IF~18.9)19, 215–221.
  68. L. L. Chua, D. Mandal, S. Sivaramakrishnan, X. Gao, D. Qi, A.T.S. Wee and P.K.H. Ho, 2006, Large damage threshold and small escape depth in X-ray Absorption Spectroscopy of a conjugated polymer thin film, Langmuir (IF~4.0), 22, 8587–8594.
  69. D. Mandal, H. D. Banerjee, M. L. N. Goswami and H. N. Acharya, 2004, Synthesis of Er and Er:Yb doped Solgel Derived Silica Glass and Studies on their Optical Properties, Bull. Mater. Sc.(IF~0.9), 27, 367–372.

Book/Chapter

  1. Biodegradable Nanocomposites for Energy Harvesting, Self-healing and Shape memory, Smart Polymer Nanocomposites, Springer Series on Polymer and Composite Materials, ISBN: 978-3-319-50424-7.
  2. Book Ch.8: Flexible Nanogenerator and Nano-Pressure Sensor Based on Nanofiber Web of PVDF and its Copolymers (2013)WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim , Germany.
  3. Ultra-thin Films of a Ferroelectric Copolymer: P(VDF-TrFE): ISBN: 978-3-659-14195-9 (2012), Lambert Academic Publishing, Germany.
  4. Book Ch.21: Microscopic and Spectroscopic Characterization of Interfaces and Dielectric Layers for OFET Devices (2009), WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim , Germany.

SCI Indexed Proceedings

  1. B. Mahanty, K. Maity, S. Sarkar and D. Mandal*, Human Skin Interactive Self-powered Piezoelectric e-skin based on PVDF/MWCNT Electrospun Nanofibers for Non-invasive Health Care Monitoring, Material Today: Proceedings, 2019 (Accepted on 3rd Feb., 2019), Ms. Ref. No.: MTP-32R1.
  2. S.K. Ghosh, M. Xie, C. R. Bowen and D. Mandal*, All-fiber Pyroelectric Nanogenerator, AIP Conference Proceedings 2018, 1942, 140025.
  3. Md. M. Alam and D. Mandal*, The Inclusion of Electroactive β-phase in Sn2+ Incorporated PVDF Composite Film for Improving Dielectric Properties and Piezoelectric Energy Generation, AIP Conference Proceedings 2018, 1942, 140057.
  4. K. Roy and D. Mandal*, CdS Decorated rGO Containing PVDF Electrospun Fiber Based Piezoelectric Nanogenerator for Mechanical Energy Harvesting Application, AIP Conference Proceedings 2018, 1942, 050125.
  5. A. Sultana, T. R. Middya and D. Mandal*, ZnS-paper Based Flexible Piezoelectric Nanogenerator, AIP Conference Proceedings 2018, 1942, 120018.
  6. K. Maity and D. Mandal*, The Nucleation of Self-poled Electroactive β-phase in Eu3+ Doped PVDF Nanocomposite Film for Optoelectronic Devices, AIP Conference Proceedings 2018, 1942, 050088.
  7. W. Rahman, S. K. Ghosh, T. R. Middya and D. Mandal*, Enhanced Mechanical Energy Harvesting Ability of Electrospun Poly(vinylidene fluoride)/Hectorite Clay Nanocomposites, AIP Conference Proceedings 2018, 1942, 050081.
  8. A. Sultana, Md. M. Alam, T. R. Middya, S. Sen and D. Mandal*, The Preparation of γ-Poly(vinylidene fluoride)/ZnS Nanocomposite for Energy Storage Application, Materials Today: Proceedings 2018, 5, 10091–10096.
  9. W. Rahman, S. Garain, A. Sultana, T. R. Middya and D. Mandal*, Self-Powered Piezoelectric Nanogenerator Based on Wurtzite ZnO Nanoparticles for Energy Harvesting Application, Materials Today: Proceedings 2018, 5, 9826 – 9830.
  10. S. Garain, S. Sen, K. Henkel, D. Schmeißer and D. Mandal*, Enhancement of Electroactive β-phase and Superior Dielectric Properties in Cerium Based Poly(vinylidene fluoride) Composite Films, Materials Today: Proceedings 2018, 5, 10084 – 10090.
  11. M. M. Alam and D. Mandal*, Fabrication of Lead Free Flexible Electrospun Hybrid Nanofibers for Designing Mechanical Energy Harvester, AIP Conf. Proc. 2017, 1832, 050169.
  12. P. Adhikary, S. Garain and D. Mandal*, P(VDF-HFP)/Cerium Composite Films with Improved Dielectric Properties for Energy Storage Applications, AIP Conf. Proc. 2017, 1832, 040025.
  13. A. Biswas, S. Garain and D. Mandal*, In situ Synthesis of Bismuth Oxide Nanorods and Fabrication of Self-poled PVDF Nanogenerator for Mechanical Energy Harvesting, AIP Conf. Proc. 2017, 1832, 040024.
  14. B. Mahanty, S. Garain, S. K. Ghosh and D. Mandal*, Cost Effective-High Performance Inorganic-Organic Hybrid Nanogenerator, Advanced Science Letters 2016, 22, 184-187.
  15. S. K. Ghosh and D. Mandal*, Self-Powered Flexible Electronics Based on Self Poled “Ferroelectretic” Nanogenerator” MRS Advances, 2016, http://dx.doi.org/10.1557/adv.2016.319.
  16. K. Müller, D. Mandal*, D. Schmeißer, No Interfacial Layer for PEDOT Electrodes on PVDF: Characterization of Reactions at the Interface P(VDF/TrFE)/Al and P(VDF/TrFE)/PEDOT:PSS, Materials Research Society Symposium Proceedings 2007, 997, I06-02.
Patents
  1. K. J. Kim, S. Yoon and D. Mandal, “Preparation Method of Electroconductive Nanofiber through Electrospinning followed by Electroless Plating”, Korean Patent 10-1079775 (2010).
  2. K. J. Kim, S. Yoon and D. Mandal, “Electrostatic Capacitance-Type Nano Generator Using Piezoelectric Nanofiber Web”, Korean Patent, 10-1248415 (2013).
Press Coverage

 Journal press release

  1. Fish 'Biowaste' Converted to Piezoelectric Energy Harvesters, AIP news staff, Washington DC, Source link: https://publishing.aip.org/publishing/journal-highlights/fish-biowaste-converted-piezoelectric-energy-harvesters
  2. Cellulose nanogenerators could one day power implanted biomedical devices, ACS news service Source link:https://www.acs.org/content/acs/en/pressroom/presspacs/2016/acs-presspac-january-27-2016/cellulose-nanogenerators-could-one-day-power-implanted-biomedical-devices.html
  3. Flexible, biodegradable device can generate power from touch, ACS news service, Source link:https://www.acs.org/content/acs/en/pressroom/presspacs/2015/acs-presspac-august-12-2015/flexible-biodegradable-device-can-generate-power-from-touch-video.html

Electronic media

  1. Telecasted in science monitor programme, Rajya Sabha (RS) TV (02 October,2016); Topic: Fish scale made bio-piezoelectric nanogenerator (initiated by Bigyan Prasar, DST); Source link: https://www.youtube.com/watch?v=qVya7qUpzCE&list=PLVOgwA_DiGzpd3_Iz7J-81Vh4QqU-ZGA9&index=61
  2. Broadcasted the interview with the Economist (UK) journalist in Science and technology https://soundcloud.com/theeconomist/babbage-the-renaissance-of-wood
  3. Telecasted in science monitor programme, Rajya Sabha (RS) TV (07 May, 2016); Topic: DNA and Cellulose made piezoelectric nanogenerator (initiated by Bigyan Prasar, DST); Source link: https://www.youtube.com/watch?v=l4YUDcAbe64

Print media

  1. The Body Power, The Telegraph https://www.telegraphindia.com/1160314/jsp/knowhow/story_74295.jsp
  2. Cellulose nanogenerator may power medical implants, The Economic Times https://economictimes.indiatimes.com/news/science/cellulose-nanogenerators-may-power-medical-implants/articleshow/51007825.cms
  3. Indian scientists' DNA device generates power from touch, The Economic Times 
    https://economictimes.indiatimes.com/news/science/indian-scientists-dna-device-generates-power-fromtouch/articleshow/48500875.cms
  4. Indian scientists recycle fish scales into green energy, The Hindu http://www.thehindu.com/sci-tech/energy-and-environment/Indian-scientists-recycle-fish-scales-into-green-energy/article14637886.ece
  5. Indian scientists found a way to recycle fish scales and generate green energy, The Financial Express http://www.financialexpress.com/lifestyle/science/indian-scientists-found-a-way-to-recycle-fish-scales-and-generate-green-energy/376859
  6. Green Living: Scientists Create Renewable Power Source from Fish Scales, The Nature World News http://www.natureworldnews.com/articles/28300/20160907/green-living-scientists-create-renewable-power-source-from-fish-scales.htm
  7. Scientists convert fish biowaste into energy harvester, The Bangalore Mirror http://bangaloremirror.indiatimes.com/others/sci-tech//articleshow/54082683.cms?

CONTACT INFORMATION :

Tel: 0172 - 2210075
Email Id : dmandal@inst.ac.in

Office Address :

Institute of Nano Science & Technology
Habitat Centre, Sector - 64, Phase X, Mohali